Identification and determination of emerging pollutants in sewage sludge driven by UPLC-QTOF-MS data mining

نویسندگان

چکیده

Sludge from sewage treatment plants (STPs) is recognized as a sink of moderate to high lipophilic compounds resistant biodegradation. Herein, we investigate the presence emerging pollutants in sludge combining information provided by mass spectrometry detection, following ultra-performance liquid chromatography (UPLC), with use an accurate spectral database pesticides and pharmaceuticals. In first step, performance matrix solid-phase dispersion, sample preparation technique, two non-target data acquisition strategies (data dependent, DDA, independent analysis modes, DIA), used combination UPLC quadrupole time-of-flight system, are assessed using selection deuterated added either freeze-dried samples, or extracts. Possibilities limitations both modes discussed. Following DDA approach, group 68 micropollutants was identified different STPs. Some them reported this compartment for time. Finally, semi-quantitative concentration 37 samples obtained 16 Out them, 10 pharmaceuticals, showing detection frequencies median residues above 50% 100 ng g?1, respectively; highlighted be monitored order understand their behaviour during wastewater treatment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal Metabolomics Combining UPLC-qToF-MS and GC-MS Data in Plasma and Brain Tissue

Metabolomic analysis of biological fluids and tissues has become an increasingly routine tool in the biological toolbox. However, challenges remain to be overcome, including developing strategies to maximise coverage of the metabolome without requiring large sample volumes. Here we describe a multimodal strategy that combines data using both LC-MS and GC-MS from a unique vial with a sample of p...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Determination of cannabinoids in whole blood by UPLC-MS-MS.

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method was developed and validated for the simultaneous determination of Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH) in whole blood. Samples were prepared by protein precipitation followed by solid-phase ext...

متن کامل

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

Identification of Iridoids in Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS.

Iridoid profiles of honeysuckle berry were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry UPLC-ESI-qTOF-MS/MS in positive and negative ions mode. The MS fragmentation pathways of detected iridoid glycosides were also studied in both modes. In the negative ESI mass spectra, iridoids with a methyl ester or lacto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science of The Total Environment

سال: 2021

ISSN: ['0048-9697', '1879-1026']

DOI: https://doi.org/10.1016/j.scitotenv.2021.146256